If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-52x=0
a = 16; b = -52; c = 0;
Δ = b2-4ac
Δ = -522-4·16·0
Δ = 2704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2704}=52$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-52)-52}{2*16}=\frac{0}{32} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-52)+52}{2*16}=\frac{104}{32} =3+1/4 $
| x-(-21)=61 | | 130+6x+14=180 | | 24y=-20y | | v-38=6 | | 130=6x+14 | | u-23=8 | | 5x-2=360 | | 15x+19x+13x=180 | | y+18=4y+1 | | 61.2=(m+3.9 | | 4320=45(x+25) | | (–1)/(2)=(–5)/18h | | 3(x+4)=12(6x+24) | | (-7x+3)(x-1)=0 | | 4320=45(p+25) | | 6y+18=24y | | 7m+-16m+-11m+-m+18m=12 | | 3m+7.75=33.25 | | 5(y-10)=9y+8 | | 5x+8=x+22 | | 7m+–16m+–11m+–m+18m=12 | | x6+7x3-8=0 | | 2(y+1)+4y=3(2-1)+8 | | 49d^2+5=0 | | 0=x^2+15x+60 | | -17.3-17.6f+12.4f=19.73-2.9f | | 90=3p-6 | | 12x+10=120 | | -3(v+5)+2=4(v=2) | | 98=7/x | | (4x+5)+(6x+5)=90 | | 19.3n-11.31=(-8.9n)+19.83+16.8 |